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This article describes the software developed for the decoding system used in the

telemetry link of the Phobos Lander mission. Encoders and decoders are provided to

cover the three possible telemetry configurations. The software can be used to decode
actual data or to simulate the performance of the telemetry system. The theoretical prop-

erties of the codes chosen for this mission are analyzed and discussed.

I. Introduction

The Soviets plan to launch a mission to Mars in mid-July

1988. This mission consists of two identical spacecraft, each

carrying a lander to be placed on Phobos, a moon of Mars. The
insertion into Mars orbit will occur in mid-February 1989. The

landing on Phobos will take place toward the end of April or

early May 1989. This mission is designed to last one year with

a possible extension to two years. NASA has agreed to provide

some data acquisition support.

NASA/JPL's direct involvement in the Phobos project cen-

ters on the landers. These are complex spacecraft that are

capable of receiving commands, transmitting telemetry, pro-

viding two-way range and doppler, and supporting Very Long

Baseline Interferometry (VLBI) measurements.

The Phobos Lander coding system block diagram is shown

in Fig. 1. The telemetry data are transmitted in frames of

2048 bits during a Phobos-Earth view period, which occurs

approximately every 7 hours, 39 minutes (the Phobos orbital

period) for a duration of approximately 20 to 40 minutes.
The Phobos Lander telemetry system can be configured to

operate in three different modes, as shown in Fig. 1. The first

mode involves the use of a K = 6, r = 1/2 convolutional code,

where K is the constraint length and r the rate of the code.

The second mode involves the use of a K = 9, r = 1/2 time-

varying convolutional code with period 4. The third mode in-
volves the use of a concatenation of a Bose-Chaudhuri-

Hocquenghem (BCH) block code and a K = 9, r = 1/2 time-

varying convolutional code.

Our work is concerned primarily with the analysis and im-

plementation of the following software modules to support
the Phobos Lander telemetry processing requirement:

(1) A convolutional encoder (K = 9, r = 1/2, time-varying).

(2) A BCH encoder (128,113).

(3) A Viterbi decoder (K = 9, r = 1/2, time-varying).

(4) A BCH decoder (128,113).

(5) Convolutional code (K = 9, r = 1/2, time-varying) and

BCH (128,113) test and simulation software.

In addition to the above software modules, an encoder

module, a decoder module, and a simulation software module
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for the K = 6, r = 1/2 convolutional code have been developed.

The K = 6, r = 1/2 modules are used only to generate per-

formance comparisons with the other operational modes.

All the software modules are written in FORTRAN-77 on

an IBM-AT-compatible computer. They are contained in three

programs:

(1) k6.f. This program contains the encoder and decoder

modules for the K = 6, r = 1/2 convolutional code.

It determines the bit-error-rate performance of this

convolutional code by simulation.

(2) k9.f. This program contains the encoder and decoder

modules for the K = 9, r = 1/2 time-varying convolu-

tional code. It determines the bit-error-rate perfor-

mance of this convolutional code by simulation.

(3) bchk9.f. This program contains the encoder and de-

coder modules for the K = 9, r = 1/2 time-varying con-
volutional code as well as the encoder and decoder

modules for the (128,113) extended BCH code. It

determines the bit-error-rate performance of the con-

catenated system consisting of the extended BCH

code as the outer code and the time-varying convolu-
tional code as the inner code, with interleaving.

The software will be transported to a Modcomp 7845 com-

puter and integrated with the Phobos Lander software package

being developed by ICI of Spain.

In this article, theoretical and simulation results on the

Phobos Lander coding system are presented. The K = 6, r = 1/2

convolutional code is discussed in Section II. The K = 9,
r = 1/2 time-varying convolutional code is delineated in Sec-

tion III. The concatenated system consisting of the extended

BCH code and the time-varying convolutional code is outlined
in Section IV. Finally, the detailed decoding algorithm of the

extended BCH code and the weight enumerator and the de-

coder error probability of the extended BCH code are presented

in Appendix A and Appendix B, respectively.

II. K = 6, • = 112 Convolutional Code

When operating in the first mode, the Phobos Lander space-

craft will convolutionally encode the telemetry data using a
constraint length 6, rate 1/2 convolutional encoder as shown

in Fig. 2. The Phobos Lander telemetry processor software will

provide the capability to decode convolutionally encoded

telemetry data (K = 6, r = 1/2) using a maximum-likelihood

decoding algorithm (Viterbi algorithm). This is an existing
DSN capability which will be integrated into the Phobos
Lander processor.

The (6,1/2) convolutional code used has connection vectors

gl = 73 and g2 = 61 (in octal), is transparent, and has a free

distance d/equal to 8. The truncation length of the Viterbi
decoder is a variable parameter and was set to 49 in our simu-

lations. The choice of truncation length of the decoder is

somewhat arbitrary as long as it is larger than approximately

5K, which guarantees a small performance degradation due to

path truncation. By assuming perfect synchronization on the
biphase modulated symbol stream on an additive white Gauss.

Jan noise (AWGN) channel, the bit-error-rate (BER) perfor-

mance of the code is simulated as a function of the bit signal-

to-noise ratio (Eb/No) , and the result is given in Fig. 3. All the
simulation results shown in this article assume that the received

symbols are unquantized.

III. K = 9, r = 112 Time-Varying Convolutional
Code

The second operational mode uses a constraint length 9,
rate 1/2, time-varying convolutional code. The connection

vectors are gl = 557, gz = 663, g3 = 711, g4 = 745 (in octal)

and are used in pairs according to the periodic sequence

(gl'g2)' (g2'g3)' (ga,g4), (g4,gl) ..... with period 4, as

shown in Fig. 4. This code has df = 10, which is far from
optimal, since the Plotkin upper bound applied to convolu-

tional codes gives d[ _< 12. For this code the minimum dis-
tance error events are always at distance i0 independent of
their starting point within the period (phase), but the number

of such events depends on the phase.

In fact, the best-known fixed convolutional code with

K = 9, r = 1/2 has connection vectors 561,753 (in octal) and

d[ = 12, which achieves the bound. Figure 5 shows the per-
formance of this code compared to the code chosen for Pho-

bos Lander on an AWGN channel, with perfect synchroniza-
tion and a truncation length of 65 bits for both codes. The

same two codes concatenated with the BCH code are com-

pared in Fig. 6. It is well known that every periodic convolu-

tional code with period T and rate kin has an equivalent fixed
code of rate Tk/Tn. In our case, the fixed code has rate 4/'8

and d[ = 10, but now error events can start only every four
bits, since the encoder inputs four bits at a time.

IV. Concatenated Coding System

When operating in the third mode, the Phobos Lander

spacecraft will first encode the telemetry data using a (128,
113) extended BCH code. Each data frame contains 19 BCH

code words (19 × 113 = 2147 bits) and is padded with 99

zeros to obtain the desired frame length of 2048 bits. The
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actual frame structure is still undefined, but it is natural to en-
vision that the 99 additional bits could be used as a frame

marker. The BCH code words are then interleaved to depth 16

before they are convolutionally encoded by a (9,1/2) time-
varying convolutional code. The DSN Phobos Lander telem-

etry processor software will provide the capability to first

decode the received data stream (convolutionally encoded)

using a maximum-likelihood decoding algorithm. The output
data of the Viterbi decoder will then be deinterleaved before

they are block decoded using a simple but efficient BCH

algebraic decoding algorithm. The detailed decoding algorithm

for the extended BCH code is given in Appendix A, and the

weight enumerator and the decoder error probability of the

extended BCH code are given in Appendix B.

The (128,113) extended BCH code consists of a (127,113)

BCH code plus an overall parity bit. The (127,113) BCH code
has a generator polynomial g(x) = 1 + x + x 2 + x 4 + x s + x 6

+ x 8 + x 9 + x 14 and is capable of correcting two errors. The

schematic diagram of the encoder of the (127,113) BCH code

is given in Fig. 7. With the addition of a parity check bit to the

BCH code word, the code is also capable of detecting three

errors. The (9,1/2) time-varying convolutional code is the same

as that discussed in Section IV. Again, by assuming perfect

synchronization on the symbol stream in a AWGN channel,

the BER performance of the code is simulated and the result

is given in Fig. 8. Figure 8 also shows a comparison of the

three operating modes of Phobos Lander.

V. Conclusion

The results obtained in this article give a first performance

evaluation of the Phobos Lander telemetry system. The soft-

ware modules will be integrated in the Phobos Lander telem-

etry processor and used at the DSN stations to support this
mission.
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Appendix A

Decoding the (128,113) Extended BCH Code

The (128,113) extended BCH code consists of a (127,113)
BCH code plus an overall parity bit. The generator polynomial

for the (127,113) BCH code isg(x) = 1 + x + x 2 + x 4 + x s

+ x 6 + x a +x 9 +x 14. The (127,113) BCH code can correct

two errors. With the introduction of an overall parity bit, the
extended code can also detect three errors.

The decoding of the (127,113) BCH code requires finite

field manipulations. A primitive irreducible polynomial f(x)

= x 7 + x 3 + 1 of order 7 over GF(2) is used to construct

GF(27). Let a be a root off(x) (i.e., f(r 0 = 0). Then for all
X E GF(27), 3. can be represented as a linear combination of

1, a ..... a 6 over GF(27).

Let gl(X) and ga(x) denote the minimal polynomials of

and ot3 , respectively (i.e., gl [a] = 0 andg 3 [a3 ] = 0). It can be

observed that g(x) = gl (x)ga (x). Let C = [CO,C i ..... C126 ]
be a BCH code word, where Ci E GF(2). Let C(x) denote the

polynomial C O + ClX +... + C126x126. The following equa-
tions are then obtained [A-l] :

and

C(a) = 0 (A-l)

C(a 3 ) = 0 (A-2)

Let C' be the received pattern and let E be the error pattern.
Then C-r--- C + E. Let

and

c' (a) =sl (A-3)

=s3

where $1, S 3 are known as the syndromes and $1, S3 E GF(27).
It is shown in [A-l] that this code can correct two or fewer

errors. The correction of a single error [A-1 ] is trivial. The cor-

rection of two errors, however, involves solving the following
quadratic equation:

x 2+S_x+ +S = 0 (S 1:/:0) (A-S)

This would normally require an exhaustive search for elements
in GF(27) which satisfy Eq. (A-5). This exhaustive search can

be bypassed by transforming Eq. (A-5) to the form x 2 +x=[],
where 13E GF(27). By using the concept of the trace of an

element in a finite field [A-2], the solvability of Eq. (A-5) can

be determined by testing if Tr(_) = 0. If Eq. (A-5) is solvable,
the two roots of that equation, which indicate the two error

locations in the code word, can be found readily with simple

algebra. The details of this algorithm are discussed in [A-l]
and [A-2].

The detection of three errors is done by considering the

overall parity of the 128 received symbols as well as the syn-

dromes S 1 and S 3. The complete decoding algorithm for the
(128,113) extended BCH code is given in Fig. A-1.
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Appendix B

The Weight Enumerator and the Decoder Error Probability
of the (128,113) Extended BCH Code

The decoder error probability PE(u) of a code is defined to

be the conditional probability that a code word is being mis-

decoded to another code word given that an error pattern of

weight u occurs. If all error patterns of weight u are equally

probable, then PE(u) is given by the following expression
[B-I], [B-2] (assuming the code is binary):

D

(B-l)

where D u denotes the number of decodable words of weight u.

In order to find Du, the weight enumerator A u of the code
(the number of code words of weight u) must first be evaluated.

The weight enumerator of the dual of the (128,113) extended

BCH code, which is denoted by B u, is given in [B-3]. A u is
then obtained by using MacWilliams's identity on binary codes

[B-4] :

A(z)= 2-(n-k)(1 + z)nB{ll_z ]
\1 z/

(B-2)

where A(z) = A o + AlZ + . .. + An zn and B(z) = B o + B 1

+ ... + BnZ n. For the dual of the (128,113) extended BCH

code, B o = 1, B56 = 8128, B64 = 16,510, B72 = 8128,
and BI28 = 1. The Ai's are then found exactly by using
MacWilliams's identity, and their values are tabulated in

Fig. B-1 for even i, since A i = 0 for odd i. The number ofde-

codable words of weight u, Du, is then calculated as follows
[a-al :

1D2n-1 = A2n_2 + (21) A2n

D2n A2n_ 2 + A2n A2n

+ A2n+2

where 4 _< n _ 64. The decoder error probability PE(U) is cal-

culated using Eq. (B-l). The values of Pc(u) are tabulated in

Fig. B-2. It is observed that PE(U) "oscillates" between two
values: 0.496 and 0.00781, depending on whether u is even or
odd. This observation will be discussed in more detail in a

forthcoming progress report.

References

[B-l]

[B-2]

R. J. McEliece and L. Swanson, "On the Decoder Error Probability for Reed-

Solomon Codes," 1EEE Tran. lnform. Theory, vol. IT-32, pp. 701-703, Septem-
ber 1986.

K.-M. Cheung, "More on the Decoder Error Probability for Reed-Solomon

Codes," TDA Progress Report 42-91, vol. July-September 1986, Jet Propulsion

Laboratory, Pasadena, California, pp. 213-223, November 15, 1987.

E. R. Berlekamp, Algebraic Coding Theory, Laguna Hills, California: Aegean Park
Press, 1984.

S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications,

Englewood Cliffs, New Jersey: Prentice-Hall, 1983.

285



oRtG,NAL F_GE ;S

OF. pOOR (DUALITY

A[ 0] _ 1.000e+000
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A[ 8] - 8.729e+007

A[ I0] = 1.384e+010
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A[ 22] - 1.827e+020

Al 24] = 3.6838+021

A[ 26] = 6.0708+022

A[ 28] -- 8.272e+023

A[ 30] - 9.4138+024

A[ 32] _ 9.0208+025

A[ 34] = 7.3328+026

A[ 36] = 5.087e+027

A[ 38] = 3.0298*028

A[ 40] - 1.5558+029

A[ 42] - 6.9148+029

A[ 44] = 2.6728*030

A[ 46] - 8.9988+030
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A[ 50] - 6.834e+031

A{ 52] = 1.5488+032

A[ 54] - 3.0828+032

A[ 55] = 5.4068+032

A[ 58] = 8.3598+032
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Fig. B-1. Weight enumerator of the (128,113) BCH code
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Fig. B-2. Decoder error probability of the (128,113) BCH code
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